CHENLU YE

The Hong Kong University of Science and Technology

cyeab@connect.ust.hk

RESEARCH INTERESTS

- Reinforcement Learning Theory;
- Statistical Machine Learning.

EDUCATION

The Hong Kong University of Science and Technology	Hong Kong, China
Ph.D. student, Department of IIP (AI)	2021.9 - $present$
Advisor: Prof. Tong Zhang and Prof. Kani Chen	
University of Science and Technology of China	Hefei, China

University of Science and Technology of China Bachelor of Science, *Department of Statistics* Ranking: Top 20% in Statistics.

Core courses: Stochastic Process(96), Linear Algebra 1-2 (95, 90), Real Analysis (95), Functional Analysis (90), Mathematical Statistics (93), Operations Research 1(97), Probability Theory (89), Computer Programming A (90)

RESEARCH

Adversarial Corruption in Reinforcement Learning with General Function Approximation 2022.9 - 2022.12 HKUST

Advisor: Prof. Tong Zhang

- We developed a corruption-robust algorithm based on uncertainty weighting and the OFU principle for contextual bandits with general function approximation.
- We extended the framework to MDPs with general function approximation by combining uncertainty weighting and the \mathcal{F} -LSVI algorithm.
- Our algorithms enjoyed a nearly optimal bound for bandits, and first achieved an additive dependence on corruption level for MDPs.

Provably Efficient Learning in High-Dimensional Batched Bandits 2020.3-2021.7 USTC

Advisor: Prof. Zhaoran Wang from Northwestern University, Prof. Zhuoran Yang from Yale University

- We designed an efficient algorithm for high-dimensional linear contextual bandits with batched feedback.
- Our algorithm enjoyed nearly the same regret order as the sequential case.
- We extended the algorithm to low-rank matrix bandits.

Recover Meaningful Representations from Bidirectional Generative Models2021.5-2022.7HKUSTAdvisor: Prof. Tong Zhang

- We expanded the existing identifiability theory of generative models to be suitable in wide applications.
- We presented a practical algorithm to solve the generative model formulation with auxiliary variables, which is analyzed in the proposed theory.
- We verified the identifiability result of the model on both artificial and real-world datasets.

HONORS AND AWARDS

PROFESSIONAL ACTIVITY	
Bronze Prize for Outstanding Student Scholarship (Top 20%)	2018.9
Bronze Prize for Outstanding Student Scholarship (Top 20%)	2019.9
Gold Prize for Outstanding Student Scholarship $(1/40)$	2020.9

Journal Reviewer: Machine Learning

2021.11